Národní úložiště šedé literatury Nalezeno 6 záznamů.  Hledání trvalo 0.01 vteřin. 
Analýza nadproudové spouště pomocí MKP
Makki, Zbyněk ; Augusta, Zbyněk (oponent) ; Valenta, Jiří (vedoucí práce)
Cílem projektu bylo připravit zadaný model proudovodné dráhy v prostředí programu Solidworks, aby bylo možné tuto proudovodnou dráhu simulovat v prostředí programu Ansys, kde se podle zadaných podmínek provedl výpočet rozložení hustoty proudu, úbytků napětí a výpočet tepelného úbytku na zadané proudovodné dráze. Získané výsledky jsou analyzovány v závěru této práce.
Nezávislý nízkonapěťový trakční asynchronní pohon
Matucha, Tomáš ; Skalický, Jiří (vedoucí práce)
Práce se zabývá vytvořením zpřesněného matematického modelu trakčního pohonu s asynchronním motorem malého jmenovitého napětí (28 V), který je napájen z akumulátorů. Model vytvořený v programu MATLAB – Simulink je složen z modelů motoru, střídače a zátěže, které jsou vzájemně propojeny a doplněny o vektorové řízení. Výsledný model umožňuje do simulací zahrnout celou řadu jevů, jež se běžně zanedbávají, ale podstatně ovlivňují chování pohonu zejména při použití motoru malého jmenovitého napětí. Jedná se o vliv sycení magnetického obvodu motoru, vliv teploty a povrchového jevu na odpory vinutí, dále vlivy nelinearit střídače jako jsou úbytky napětí na spínacích prvcích, ochranné doby a zapínací a vypínací doby tranzistorů střídače. Velká pozornost byla věnována určování ztrát v jednotlivých částech pohonu. V rámci práce bylo vytvořeno laboratorní pracoviště, na němž byla ověřena správnost modelu. Laboratorní pohon je možno řídit pomocí mikroprocesoru nebo pomocí MATLABu ve spojení s aplikací dSPACE. Na laboratorním vzorku byl analyzován vliv kompenzací nelinearit střídače a kolísání napětí stejnosměrného meziobvodu na vyšší harmonické větvového proudu. Bylo řešeno také řízení motoru zajišťující minimální Jouleovy ztráty.
Simulace přestupu tepla v nízkonapěťovém rozváděči MNS
Czudek, Aleš ; Maxa, Jiří (oponent) ; Vyroubal, Petr (vedoucí práce)
Obsahem práce je diagnostika teplotního pole průmyslových rozváděčů nízkého napětí. Místa vzniku, proudění a odvod tepla jsou důležitými aspekty při návrhu rozváděče, zejména z pohledu správného rozvržení přístrojů. Správnost konstrukčního návrhu rozváděče se prověřuje praktickým proměřením teplotního pole při jeho testování nebo v pracovním režimu. Pro určení teplotního profilu je nutno provést měření teplot v různých místech rozváděče, a to buď kontaktní, nebo bezkontaktní metodou. Měření jsou prováděna na standardizovaných rozváděčích nízkého napětí, ve kterých jsou umístěny výkonové prvky. Cílem práce je nahradit nákladné a zdlouhavé praktické testování rozváděče úspornou simulací teplotního pole matematického modelu vyvíjených rozváděčů.
Nezávislý nízkonapěťový trakční asynchronní pohon
Matucha, Tomáš ; Skalický, Jiří (vedoucí práce)
Práce se zabývá vytvořením zpřesněného matematického modelu trakčního pohonu s asynchronním motorem malého jmenovitého napětí (28 V), který je napájen z akumulátorů. Model vytvořený v programu MATLAB – Simulink je složen z modelů motoru, střídače a zátěže, které jsou vzájemně propojeny a doplněny o vektorové řízení. Výsledný model umožňuje do simulací zahrnout celou řadu jevů, jež se běžně zanedbávají, ale podstatně ovlivňují chování pohonu zejména při použití motoru malého jmenovitého napětí. Jedná se o vliv sycení magnetického obvodu motoru, vliv teploty a povrchového jevu na odpory vinutí, dále vlivy nelinearit střídače jako jsou úbytky napětí na spínacích prvcích, ochranné doby a zapínací a vypínací doby tranzistorů střídače. Velká pozornost byla věnována určování ztrát v jednotlivých částech pohonu. V rámci práce bylo vytvořeno laboratorní pracoviště, na němž byla ověřena správnost modelu. Laboratorní pohon je možno řídit pomocí mikroprocesoru nebo pomocí MATLABu ve spojení s aplikací dSPACE. Na laboratorním vzorku byl analyzován vliv kompenzací nelinearit střídače a kolísání napětí stejnosměrného meziobvodu na vyšší harmonické větvového proudu. Bylo řešeno také řízení motoru zajišťující minimální Jouleovy ztráty.
Simulace přestupu tepla v nízkonapěťovém rozváděči MNS
Czudek, Aleš ; Maxa, Jiří (oponent) ; Vyroubal, Petr (vedoucí práce)
Obsahem práce je diagnostika teplotního pole průmyslových rozváděčů nízkého napětí. Místa vzniku, proudění a odvod tepla jsou důležitými aspekty při návrhu rozváděče, zejména z pohledu správného rozvržení přístrojů. Správnost konstrukčního návrhu rozváděče se prověřuje praktickým proměřením teplotního pole při jeho testování nebo v pracovním režimu. Pro určení teplotního profilu je nutno provést měření teplot v různých místech rozváděče, a to buď kontaktní, nebo bezkontaktní metodou. Měření jsou prováděna na standardizovaných rozváděčích nízkého napětí, ve kterých jsou umístěny výkonové prvky. Cílem práce je nahradit nákladné a zdlouhavé praktické testování rozváděče úspornou simulací teplotního pole matematického modelu vyvíjených rozváděčů.
Analýza nadproudové spouště pomocí MKP
Makki, Zbyněk ; Augusta, Zbyněk (oponent) ; Valenta, Jiří (vedoucí práce)
Cílem projektu bylo připravit zadaný model proudovodné dráhy v prostředí programu Solidworks, aby bylo možné tuto proudovodnou dráhu simulovat v prostředí programu Ansys, kde se podle zadaných podmínek provedl výpočet rozložení hustoty proudu, úbytků napětí a výpočet tepelného úbytku na zadané proudovodné dráze. Získané výsledky jsou analyzovány v závěru této práce.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.